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Abstract— This paper explores the optimization of 

multivariable linear regression through the use of 

vectorization methods to improve computational efficiency. 

Conventional methods for linear regression, like iterative 

gradient descent, frequently need several iterations and can 

be resource-intensive for extensive datasets. Through the use 

of vectorization, these repetitive tasks are replaced with 

effective matrix and vector calculations, decreasing 

processing duration while keeping the precision. 

Furthermore, the closed-form solution for linear regression, 

derived from the normal equation, is considered as an 

alternative to iterative techniques. A comparative study will 

show the benefits and drawbacks of vectorization methods 

and the closed-form technique, stressing their effectiveness in 

various situations. This paper shows how vectorized 

calculations simplify linear regression tasks and provide 

efficient implementations. 

 

Keywords—Vector, Linear Regression, Matrix, 

Optimization.  

 

 

I.   INTRODUCTION 

Linear regression is a core algorithm in statistics and 

machine learning, commonly used for predictive analysis 

and exploring the connections between variables. It serves 

as the foundation for more complex models and is 

frequently the initial step in examining and interpreting 

data. Although the principles of linear regression are quite 

straightforward, efficiently applying it, particularly for 

extensive datasets or high-dimensional information, 

presents considerable computational difficulties. 

Historically, the iterative technique using gradient 

descent has been the conventional approach for addressing 

linear regression issues. Gradient descent is an 

optimization technique that progressively refines the 

model parameters to reduce the cost function, reflecting the 

difference between predicted and actual outcomes. 

Although gradient descent is effective, it can be costly in 

terms of computation since it frequently requires several 

passes through the dataset, and its performance is greatly 

influenced by hyperparameters like the learning rate and 

iteration count. This repetitive process turns into a 

limitation when handling large datasets or complex 

features, resulting in longer computational times and 

greater resource use. 

Vectorization methods provide an effective answer to 

these issues by substituting iterative calculations with 

matrix and vector operations. Utilizing the advantages of 

linear algebra, vectorized calculations handle complete 

datasets simultaneously, greatly minimizing the expenses 

associated with loops. For instance, rather than adjusting 

model parameters individually for each sample, 

vectorization enables concurrent updates through the use 

of matrix multiplication. This method not only accelerates 

calculations but also leverages modern hardware designs, 

like GPUs and enhanced linear algebra libraries, 

specifically built to perform matrix operations effectively. 

A different option to iterative techniques is the closed-

form solution for linear regression, obtained from the 

normal equation. The closed-form solution offers a precise 

mathematical equation to determine the optimal model 

parameters without requiring iterative adjustments.  

 This study explores the effectiveness of vectorization 

methods and the closed-form solution for enhancing 

multivariable linear regression. Through a comparison of 

these methods against the conventional iterative approach, 

the study aim to highlight their advantages and 

disadvantages, offering insights into their appropriateness 

for different situations.  

 

II.  THEORETICAL FRAMEWORK 

A. Vector 
In mathematics and computing domains, vectors are 

essential because they offer an organized method of 

representing data and carrying out computations quickly. 

Vectors allow features, parameters, and target values to be 

represented in machine learning and linear regression, 

serving as the foundation for complex calculations. The 

notion of vectors and the fundamental procedures that 

enable their application in resolving linear regression 

issues are examined in this framework. 

 

1. Definition of vector 

A vector is an ordered set of elements, often written as: 

 

𝑣 = [𝑣1, 𝑣2, … , 𝑣𝑛] 
 

Where 𝑣𝑖 represents the 𝑖𝑡ℎ component of the vector, and 

𝑛 is the dimension of the vector. Vectors can be represented 

geometrically as directed line segments in space or 

algebraically as one-dimensional arrays of scalars. 

There are two primary types of vectors: 
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 Row Vectors: Represented as 𝑣 = [𝑣1, 𝑣2, … , 𝑣𝑛] 

 Column Vectors: Represented as 𝑣 =

𝑣1

𝑣2

𝑣3

𝑣4

 

Depending on the application or challenge, vectors can 

exist in any dimension, from higher-dimensional spaces to 

one-dimensional arrays. 

 

2. Core Vector Operations 

 Addition and Subtraction 

The addition and substraction of two vectors 𝑎 =
[𝑎1, 𝑎2, … , 𝑎𝑛] and 𝑏 = [𝑏1, 𝑏2, … , 𝑏𝑛] is performed 

element wise: 

𝑐 = 𝑎 + 𝑏,  𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖 

𝑐 = 𝑎 − 𝑏,  𝑐𝑖 = 𝑎𝑖 − 𝑏𝑖 

 

 Scalar Multiplication 

A vector can be scaled by multiplying each element by a 

scalar α :  

d  = αa, di = αai 

 

 Dot Product 

The dot product (or scalar product) of two vectors 𝑎 

𝑏 is a scalar defined as: 

𝑎 ⋅ 𝑏 = ∑ 𝑎𝑖𝑏𝑖

𝑛

𝑖=1

 

 

The dot product is essential for computing projections 

and is frequently used to gauge how well two vectors align. 

 

 Cross Product (for 3D Vectors) 

For three-dimensional vectors 𝑎 and 𝑏 the cross product 

produces a new vector orthogonal to both:  

𝑐 = 𝑎 × 𝑏 

 

 Norm (Magnitude) 

The norm or magnitude of a vector represents its length 

and is computed as: 

|𝑣| = √∑ 𝑣𝑖
2

𝑛

𝑖=1

 

 Unit Vector 

A unit vector is obtained by normalizing a vector 𝑎, 

giving it a magnitude of 1: 

𝑢 =
𝑣

|𝑣|
 

3. Vector Transformation 

Vectors can be transformed by applying functions or 

interacting with matrices: 

 Matrix-Vector Multiplication  

  Given a matrix 𝐴 of size 𝑚 𝑥 𝑚 and vector 𝑥 of size 𝑛, 

the product is is a vector 𝑏 of size 𝑚: 

b =  Ax 

 

 Projection 

A vector 𝑏 can be projected onto another vector 𝑎 as: 

Projab =
a ⋅ b

|a|2
a 

 

 Cosine Similarity (Cos Product) 

measures the cosine of the angle between two vectors, 

providing a similarity score between −1 (opposite) and 1 

(identical direction). 

cos θ =
𝑎 ⋅ 𝑏

|𝑎||𝑏|
 

  

4. Vector Representation 

 Parametric Representation 

allows a vector to change along a line, plane, or higher-

dimensional space by expressing it in terms of a parameter. 

For a line passing through a point 𝑝 and extending in the 

direction of 𝑑, the parametric form is :  

 

𝑟(𝑡) = 𝑝 + 𝑡𝑑,  𝑡 ∈ 𝑅 

 

For a plane, the parametric representation becomes: 

 

𝑟(𝑠, 𝑡) = 𝑝 + 𝑠𝑑1 + 𝑡𝑑2,  𝑠, 𝑡 ∈ 𝑅 

 

 Linear Combination of Vectors 

A linear combination of vectors represents a vector as 

weighted sum of other vectors. Given a set of vectors 

𝑣1, 𝑣2, … , 𝑣𝑛, a linear combination is:  

 

𝑣 = 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑛𝑣𝑛 

 

B. Matrix  

1. Definition of a Matrix 

Matrices are two-dimensional arrays of numbers 

arranged in rows and columns. A matrix 𝐴 of size 𝑚 𝑥 𝑛 

can be viewed as a collection of 𝑚 row vectors or 𝑛 column 

vectors. 

 

 
Figure 1. Matrix 

Source: [3] 

 

2. Types of Matrices 

Matrices can be classified based on their structure and 

properties: 

 Row Matrix: A matrix with only one row, e.g., 

1 𝑥 𝑛. 

 Column Matrix: A matrix with only one column, 

e.g., 𝑚 𝑥 1. 

 Square Matrix: A matrix with the same number of 

rows and columns, e.g., 𝑛 𝑥 𝑛. 

 Diagonal Matrix: A square matrix where all 

elements outside the main diagonal are zero. 
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 Identity Matrix: A diagonal matrix where all 

diagonal elements are 1.  

 

3. Matrix Operations 

 Addition and Subtraction 

Two matrices 𝐴 and 𝐵 of the same dimensions can be 

added or subtracted element-wise: 

 

𝐶 = 𝐴 + 𝐵,  𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 

 

 Scalar Multiplication 

A matrix can be multiplied by a scalar K, scaling each 

element:  

 

𝐶 = 𝑘𝐴,  𝑐𝑖𝑗 = 𝑘 ⋅ 𝑎𝑖𝑗 

 

 Matrix Multiplication 

If 𝐴 is 𝑚 𝑥 𝑛 and 𝐵 is 𝑛 𝑥 𝑝, their product 𝐶 =  𝐴𝐵 is an 

𝑚 𝑥 𝑝 matrix: 

 

𝑐𝑖𝑗 = ∑ 𝑎𝑖𝑘𝑏𝑘𝑗

𝑛

𝑘=1

 

 

- Transpose  

The transpose of a matrix 𝐴 flips its rows and columns 

- Determinant 

For a square matrix 𝐴 the determinant provides important 

information about the matrix, such as whether it is 

invertible and the scaling factor of the transformation 

represented by the matrix. 

- Inverse  

The inverse of  matrix 𝐴 is 𝐴−1 and the relation between 

them is expressed as: 

 

𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼 

 

C. Linear Regression 
Linear regression is a fundamental algorithm in machine 

learning used for depicting the connection between one or 

several independent variables (features) and a dependent 

variable (target). The algorithm assumes a linear 

connection between the features and the target, trying to 

identify the optimal line by reducing the error, typically 

assessed using a loss or cost function. 

The process of optimizing linear regression can be 

achieved through iterative techniques such as gradient 

descent or by using a closed-form solution for direct 

computation. This framework examines both methods, 

emphasizing their mathematical foundations and 

computational efficiencies. 

1. Definition of Linear Regression 

In linear regression, the prediction ŷ for given input 𝑥 is 

modeled as: 

 

�̂� = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏 

 

This can be written in vectorized form as: 

 

�̂� = 𝑤𝑇𝑥 + 𝑏 

 

Where:  

- 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] is Feature vector. 

- 𝑤 = [𝑤1, 𝑤2 , … , 𝑤𝑛] is Weight vector 

(coefficients). 

- 𝑏 = Bias term (intercept). 

 

2. Loss Function 

The most commonly used loss function in linear 

regression is the Mean Squared Error (MSE), defined as: 

 

𝐿(𝑤, 𝑏) =
1

2𝑚
∑(𝑦(𝑖)̂ − 𝑦(𝑖))

2
𝑚

𝑖=1

 

 

Where: 

 𝑦(𝑖)̂ is Predicted value for the 𝑖𝑡h sample. 

 𝑦(𝑖) is True target value for the 𝑖𝑡ℎ sample. 

 𝑚 is Number of samples. 

The goal of linear regression is to minimize this loss 

function by optimizing 𝑤 and 𝑏. 

 

3. Computing Linear Regression 

Linear regression can be calculated through two primary 

methods: iterative looping (such as gradient descent) and 

direct vectorized techniques (closed form). 

 Iterative Looping Approach 

Gradient descent is an iterative optimization algorithm 

used to minimize the loss function. It updates the weights 

and bias using the gradients of the loss function with 

respect to 𝑤 and 𝑏. 

Gradient Descent Update Rules: 

 

𝑤𝑗 ← 𝑤𝑗 − α
∂𝐿

∂𝑤𝑗

,  𝑏 ← 𝑏 − α
∂𝐿

∂𝑏
 

 

Where α is the learning rate, and the partial derivatives 

are:  

 

∂𝐿

∂𝑤𝑗

=
1

𝑚
∑(𝑦(𝑖)̂ − 𝑦(𝑖))𝑥𝑗

(𝑖)

𝑚

𝑖=1

 

 

∂𝐿

∂𝑏
=

1

𝑚
∑(𝑦(𝑖)̂ − 𝑦(𝑖))

𝑚

𝑖=1

 

 

 Vectorized Approach (Closed Form Solution) 

The vectorized or closed-form solution directly 

computes the optimal values of 𝑤 and 𝑏 by solving the 

normal equation: 

 

𝑤 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 

 

Where: 

- 𝑋𝑇 is Transpose of the feature matrix. 
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- (𝑋𝑇𝑋)−1 is Inverse of  Gram matrix.  

 

III.   IMPLEMENTATION 

A. Initialization 

 
Figure 2. Initialization code 

Source: writer’s archive 

 

This code sets up and handles the Iris dataset, a popular 

dataset in machine learning. It loads the dataset with 

sklearn.datasets.load_iris, obtaining the feature matrix 

(data) and target labels (target). The particular feature petal 

length (data[:, 2]) is designated as x_train for the feature 

variable, whereas sepal length (data[:, 0]) is assigned as 

y_train for the target variable.  

 

B. Linear Regression with Iterative Approach 

 
Figure 3. compute_loss function 

Source: writer’s archive 

 

The compute_loss function calculates the Mean 

Squared Error (MSE) cost linked to linear regression. It 

accepts the input data x (features), y (responses), and the 

model parameters w (coefficients) and b (bias). The 

function goes through each data point, computes the 

predicted value based on the linear equation, and finds the 

square of the difference between the predicted value and 

the actual target value. 

 

 
Figure 4. compute_gradient function 

Source: writer’s archive 

 

 The compute_gradient function calculates the gradients 

of the loss function with respect to the model parameters 𝑤 

(weight) 𝑏 (bias) for a linear regression model. The 

function takes the feature array 𝑥, target array 𝑦, and the 

current model parameters 𝑤 and 𝑏 as inputs. It iterates 

through all data points to compute the predicted value, 

accumulates the gradients for each parameter, and 

normalizes them by dividing by the total number of 

samples. These gradients, d𝑗_dw and 𝑑𝑗_𝑑𝑏, are used in 

gradient descent to update the model parameters and 

minimize the loss. 

 

 
Figure 5. gradient_descent function 

Source: writer’s archive 

 

The gradient_descent function optimizes a linear 

regression model by repeatedly adjusting the model 

parameters w (weight) and b (bias) to reduce the loss 

function. The function receives the feature array x, the 

target array y, initial parameters w_in and b_in, the 

learning rate alpha, the number of iterations num_iters, 

along with the compute_loss and gradient_function as 

inputs. 
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C. Linear Regression with Vectorized Approach 

 
Figure 6. vectorized_gradient_decent function 

Source: writer’s archive 

 

The vectorized_gradient_descent function performs 

gradient descent for linear regression using a fully 

vectorized approach. Predictions for all samples are 

computed simultaneously as �̂� = 𝑋. 𝑤 + 𝑏, and the 

gradients are calculated in a vectorized form: 

 
∂𝐿

∂𝑤
=

1

𝑚
𝑋𝑇 ⋅ (�̂� − 𝑦) 

 
∂𝐿

∂𝑏
=

1

𝑚
∑(�̂� − 𝑦) 

 

These gradients enable effective modifications of the 

parameters without going through each individual sample. 

This vectorized method enhances the algorithm's speed and 

is more suitable for larger datasets. The function returns the 

optimized parameters along with the loss history. 

 

D. Linear Regression with Closed Form 

 
Figure 7. closed_form_linear_regression function 

Source: writer’s archive 

 

The closed_form_linear_regression function computes 

the optimal weights 𝑤 and bias 𝑏 for linear regression using 

the normal equation. It augments the feature matrix 𝑋 with 

a column of ones to account for bias term and perform 

matrix operations to calculate 𝑤 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌. The 

function then extracts 𝑏 from the first element of the result 

and the remaining elements as 𝑤. 

 

E. Time Comparison Visualization 

 
Fig 8. Plot_execution_time_comparison 

Source: writer’s archive 

 

The plot_execution_time_comparison function uses a 

bar chart to show the execution timings of several 

techniques (such as Gradient Descent, Vectorized Gradient 

Descent, and Closed Form). It takes in times (the 

corresponding execution times in seconds) and methods (a 

list of method names). The function shows a title, plots the 

bars, and labels the y-axis with "Execution Time 

(seconds)". Additionally, it overlays a text box on the chart 

that is dynamically positioned in relation to the bar heights 

and contains specific execution timings for each method. 

 

IV.   RESULTS AND ANALYSIS 

A. Initial Dataset 

 
Figure 9. Initial Dataset Information 

Source: writer’s archive 

 

The initially loaded dataset contains 4 features and 150 

rows, with one feature (sepal length) designated as the 

target variable. All features are of type float64, and there 

are no null values in the dataset. 
 

B. Final 𝑤 and 𝑏  

 
Figure 10. Final 𝑤 and 𝑏 values 

Source: writer’s archive 
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The final 𝑤 (weights) and 𝑏 (bias) values remain 

consistent throughout the three methods: Gradient Descent, 

Vectorized Gradient Descent, and the Closed-Form 

solution. This result emphasizes the accuracy of every 

method in addressing the linear regression issue, since they 

reach the same ideal parameters. Gradient Descent and its 

vectorized version progressively reduce the loss function 

over 10,000 iterations using a learning rate (α) of 1𝑥10−2 

, ensuring a precise output. Whereas the Closed-Form 

solution directly calculates the optimal parameters through 

the normal equation. Although they use different 

computational methods, the ultimate outcomes confirm the 

mathematical equivalence of these techniques when 

applied properly. 

 

C. Time Comparison 

 
Fig 11. Time Comparison Chart 

Source: writer’s archive 

 

The time comparison chart shows that the Closed-Form 

solution is the quickest of the three methods, followed by 

Vectorized Gradient Descent and lastly Gradient Descent. 

This outcome is expected because of the characteristics of 

the computational procedure for each method. The Closed-

Form solution computes the ideal parameters directly 

through matrix operations, avoiding iterative updates and 

achieving convergence in one step, which makes it very 

efficient. 

 

Vectorized Gradient Descent, although it remains 

iterative, greatly advantages from using optimized NumPy 

libraries. These libraries are created to efficiently manage 

extensive matrix and vector operations, allowing 

concurrent updates for all data points and minimizing 

computation time relative to the traditional Gradient 

Descent method. This vectorized approach reduces 

overhead and fully utilizes modern hardware acceleration. 

Gradient Descent, by contrast, executes these updates for 

every data point iteratively, making it more 

computationally intensive, particularly as the size of the 

dataset increases. 

These findings highlight the necessity of choosing the 

right approach according to the dataset size and available 

computational resources. The Closed-Form solution works 

best for small to medium datasets, whereas Vectorized 

Gradient Descent provides a good mix of efficiency and 

scalability for larger datasets. Standard Gradient Descent, 

although less speedy, remains beneficial in scenarios 

where a straightforward approach or incremental 

monitoring is needed.  

 

V.   CONCLUSION 

This study compared three approaches for solving linear 

regression problems: Gradient Descent, Vectorized 

Gradient Descent, and the Closed-Form solution. The 

results showed that although all techniques yielded 

identical final values for the model parameters (w and b), 

their computational efficiency differed notably. 

The Closed-Form solution proved to be the quickest, 

thanks to its straightforward calculation of parameters via 

the normal equation without requiring iterative updates. 

Nonetheless, the computational expense may become 

excessive for extremely large datasets because of the 

matrix inversion process. Vectorized Gradient Descent 

provides a mix of speed and scalability, greatly enhanced 

by optimized NumPy libraries for matrix and vector 

computations, making it an ideal option for extensive 

datasets. Gradient Descent is the slowest method because 

of its non-vectorized iterative updates, making it less ideal 

for modern applications with large-scale data. 

This study highlights the significance of choosing the 

right technique according to dataset size, available 

computational resources, and the particular needs of the 

issue. For datasets that are small to medium in size, the 

Closed-Form solution is the best choice. For bigger 

datasets, Vectorized Gradient Descent offers a more 

effective and scalable option. 

 

VI.    APPENDIX 

Video Link : 

https://www.canva.com/design/DAGbCzc9EMM/PtwpeA

7qbBHVizJL0-

mldQ/view?utm_content=DAGbCzc9EMM&utm_campai

gn=designshare&utm_medium=link&utm_source=recordi

ng_view 
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