
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Optimizing Multivariable Linear Regression with

Vectorization Techniques

Steven Owen Liauw - 13523103
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13523103@itb.ac.id, owenliauw05@gmail.com

Abstract— This paper explores the optimization of

multivariable linear regression through the use of

vectorization methods to improve computational efficiency.

Conventional methods for linear regression, like iterative

gradient descent, frequently need several iterations and can

be resource-intensive for extensive datasets. Through the use

of vectorization, these repetitive tasks are replaced with

effective matrix and vector calculations, decreasing

processing duration while keeping the precision.

Furthermore, the closed-form solution for linear regression,

derived from the normal equation, is considered as an

alternative to iterative techniques. A comparative study will

show the benefits and drawbacks of vectorization methods

and the closed-form technique, stressing their effectiveness in

various situations. This paper shows how vectorized

calculations simplify linear regression tasks and provide

efficient implementations.

Keywords—Vector, Linear Regression, Matrix,

Optimization.

I. INTRODUCTION

Linear regression is a core algorithm in statistics and

machine learning, commonly used for predictive analysis

and exploring the connections between variables. It serves

as the foundation for more complex models and is

frequently the initial step in examining and interpreting

data. Although the principles of linear regression are quite

straightforward, efficiently applying it, particularly for

extensive datasets or high-dimensional information,

presents considerable computational difficulties.

Historically, the iterative technique using gradient

descent has been the conventional approach for addressing

linear regression issues. Gradient descent is an

optimization technique that progressively refines the

model parameters to reduce the cost function, reflecting the

difference between predicted and actual outcomes.

Although gradient descent is effective, it can be costly in

terms of computation since it frequently requires several

passes through the dataset, and its performance is greatly

influenced by hyperparameters like the learning rate and

iteration count. This repetitive process turns into a

limitation when handling large datasets or complex

features, resulting in longer computational times and

greater resource use.

Vectorization methods provide an effective answer to

these issues by substituting iterative calculations with

matrix and vector operations. Utilizing the advantages of

linear algebra, vectorized calculations handle complete

datasets simultaneously, greatly minimizing the expenses

associated with loops. For instance, rather than adjusting

model parameters individually for each sample,

vectorization enables concurrent updates through the use

of matrix multiplication. This method not only accelerates

calculations but also leverages modern hardware designs,

like GPUs and enhanced linear algebra libraries,

specifically built to perform matrix operations effectively.

A different option to iterative techniques is the closed-

form solution for linear regression, obtained from the

normal equation. The closed-form solution offers a precise

mathematical equation to determine the optimal model

parameters without requiring iterative adjustments.

 This study explores the effectiveness of vectorization

methods and the closed-form solution for enhancing

multivariable linear regression. Through a comparison of

these methods against the conventional iterative approach,

the study aim to highlight their advantages and

disadvantages, offering insights into their appropriateness

for different situations.

II. THEORETICAL FRAMEWORK

A. Vector
In mathematics and computing domains, vectors are

essential because they offer an organized method of

representing data and carrying out computations quickly.

Vectors allow features, parameters, and target values to be

represented in machine learning and linear regression,

serving as the foundation for complex calculations. The

notion of vectors and the fundamental procedures that

enable their application in resolving linear regression

issues are examined in this framework.

1. Definition of vector

A vector is an ordered set of elements, often written as:

𝑣 = [𝑣1, 𝑣2, … , 𝑣𝑛]

Where 𝑣𝑖 represents the 𝑖𝑡ℎ component of the vector, and

𝑛 is the dimension of the vector. Vectors can be represented

geometrically as directed line segments in space or

algebraically as one-dimensional arrays of scalars.

There are two primary types of vectors:

mailto:13523103@itb.ac.id
mailto:owenliauw05@gmail.com

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

 Row Vectors: Represented as 𝑣 = [𝑣1, 𝑣2, … , 𝑣𝑛]

 Column Vectors: Represented as 𝑣 =

𝑣1

𝑣2

𝑣3

𝑣4

Depending on the application or challenge, vectors can

exist in any dimension, from higher-dimensional spaces to

one-dimensional arrays.

2. Core Vector Operations

 Addition and Subtraction

The addition and substraction of two vectors 𝑎 =
[𝑎1, 𝑎2, … , 𝑎𝑛] and 𝑏 = [𝑏1, 𝑏2, … , 𝑏𝑛] is performed

element wise:

𝑐 = 𝑎 + 𝑏, 𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖

𝑐 = 𝑎 − 𝑏, 𝑐𝑖 = 𝑎𝑖 − 𝑏𝑖

 Scalar Multiplication

A vector can be scaled by multiplying each element by a

scalar α :

d  = αa, di = αai

 Dot Product

The dot product (or scalar product) of two vectors 𝑎

𝑏 is a scalar defined as:

𝑎 ⋅ 𝑏 = ∑ 𝑎𝑖𝑏𝑖

𝑛

𝑖=1

The dot product is essential for computing projections

and is frequently used to gauge how well two vectors align.

 Cross Product (for 3D Vectors)

For three-dimensional vectors 𝑎 and 𝑏 the cross product

produces a new vector orthogonal to both:

𝑐 = 𝑎 × 𝑏

 Norm (Magnitude)

The norm or magnitude of a vector represents its length

and is computed as:

|𝑣| = √∑ 𝑣𝑖
2

𝑛

𝑖=1

 Unit Vector

A unit vector is obtained by normalizing a vector 𝑎,

giving it a magnitude of 1:

𝑢 =
𝑣

|𝑣|

3. Vector Transformation

Vectors can be transformed by applying functions or

interacting with matrices:

 Matrix-Vector Multiplication

 Given a matrix 𝐴 of size 𝑚 𝑥 𝑚 and vector 𝑥 of size 𝑛,

the product is is a vector 𝑏 of size 𝑚:

b =  Ax

 Projection

A vector 𝑏 can be projected onto another vector 𝑎 as:

Projab =
a ⋅ b

|a|2
a

 Cosine Similarity (Cos Product)

measures the cosine of the angle between two vectors,

providing a similarity score between −1 (opposite) and 1

(identical direction).

cos θ =
𝑎 ⋅ 𝑏

|𝑎||𝑏|

4. Vector Representation

 Parametric Representation

allows a vector to change along a line, plane, or higher-

dimensional space by expressing it in terms of a parameter.

For a line passing through a point 𝑝 and extending in the

direction of 𝑑, the parametric form is :

𝑟(𝑡) = 𝑝 + 𝑡𝑑, 𝑡 ∈ 𝑅

For a plane, the parametric representation becomes:

𝑟(𝑠, 𝑡) = 𝑝 + 𝑠𝑑1 + 𝑡𝑑2, 𝑠, 𝑡 ∈ 𝑅

 Linear Combination of Vectors

A linear combination of vectors represents a vector as

weighted sum of other vectors. Given a set of vectors

𝑣1, 𝑣2, … , 𝑣𝑛, a linear combination is:

𝑣 = 𝑐1𝑣1 + 𝑐2𝑣2 + ⋯ + 𝑐𝑛𝑣𝑛

B. Matrix

1. Definition of a Matrix

Matrices are two-dimensional arrays of numbers

arranged in rows and columns. A matrix 𝐴 of size 𝑚 𝑥 𝑛

can be viewed as a collection of 𝑚 row vectors or 𝑛 column

vectors.

Figure 1. Matrix

Source: [3]

2. Types of Matrices

Matrices can be classified based on their structure and

properties:

 Row Matrix: A matrix with only one row, e.g.,

1 𝑥 𝑛.

 Column Matrix: A matrix with only one column,

e.g., 𝑚 𝑥 1.

 Square Matrix: A matrix with the same number of

rows and columns, e.g., 𝑛 𝑥 𝑛.

 Diagonal Matrix: A square matrix where all

elements outside the main diagonal are zero.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

 Identity Matrix: A diagonal matrix where all

diagonal elements are 1.

3. Matrix Operations

 Addition and Subtraction

Two matrices 𝐴 and 𝐵 of the same dimensions can be

added or subtracted element-wise:

𝐶 = 𝐴 + 𝐵, 𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗

 Scalar Multiplication

A matrix can be multiplied by a scalar K, scaling each

element:

𝐶 = 𝑘𝐴, 𝑐𝑖𝑗 = 𝑘 ⋅ 𝑎𝑖𝑗

 Matrix Multiplication

If 𝐴 is 𝑚 𝑥 𝑛 and 𝐵 is 𝑛 𝑥 𝑝, their product 𝐶 = 𝐴𝐵 is an

𝑚 𝑥 𝑝 matrix:

𝑐𝑖𝑗 = ∑ 𝑎𝑖𝑘𝑏𝑘𝑗

𝑛

𝑘=1

- Transpose

The transpose of a matrix 𝐴 flips its rows and columns

- Determinant

For a square matrix 𝐴 the determinant provides important

information about the matrix, such as whether it is

invertible and the scaling factor of the transformation

represented by the matrix.

- Inverse

The inverse of matrix 𝐴 is 𝐴−1 and the relation between

them is expressed as:

𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼

C. Linear Regression
Linear regression is a fundamental algorithm in machine

learning used for depicting the connection between one or

several independent variables (features) and a dependent

variable (target). The algorithm assumes a linear

connection between the features and the target, trying to

identify the optimal line by reducing the error, typically

assessed using a loss or cost function.

The process of optimizing linear regression can be

achieved through iterative techniques such as gradient

descent or by using a closed-form solution for direct

computation. This framework examines both methods,

emphasizing their mathematical foundations and

computational efficiencies.

1. Definition of Linear Regression

In linear regression, the prediction ŷ for given input 𝑥 is

modeled as:

�̂� = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏

This can be written in vectorized form as:

�̂� = 𝑤𝑇𝑥 + 𝑏

Where:

- 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] is Feature vector.

- 𝑤 = [𝑤1, 𝑤2 , … , 𝑤𝑛] is Weight vector

(coefficients).

- 𝑏 = Bias term (intercept).

2. Loss Function

The most commonly used loss function in linear

regression is the Mean Squared Error (MSE), defined as:

𝐿(𝑤, 𝑏) =
1

2𝑚
∑(𝑦(𝑖)̂ − 𝑦(𝑖))

2
𝑚

𝑖=1

Where:

 𝑦(𝑖)̂ is Predicted value for the 𝑖𝑡h sample.

 𝑦(𝑖) is True target value for the 𝑖𝑡ℎ sample.

 𝑚 is Number of samples.

The goal of linear regression is to minimize this loss

function by optimizing 𝑤 and 𝑏.

3. Computing Linear Regression

Linear regression can be calculated through two primary

methods: iterative looping (such as gradient descent) and

direct vectorized techniques (closed form).

 Iterative Looping Approach

Gradient descent is an iterative optimization algorithm

used to minimize the loss function. It updates the weights

and bias using the gradients of the loss function with

respect to 𝑤 and 𝑏.

Gradient Descent Update Rules:

𝑤𝑗 ← 𝑤𝑗 − α
∂𝐿

∂𝑤𝑗

, 𝑏 ← 𝑏 − α
∂𝐿

∂𝑏

Where α is the learning rate, and the partial derivatives

are:

∂𝐿

∂𝑤𝑗

=
1

𝑚
∑(𝑦(𝑖)̂ − 𝑦(𝑖))𝑥𝑗

(𝑖)

𝑚

𝑖=1

∂𝐿

∂𝑏
=

1

𝑚
∑(𝑦(𝑖)̂ − 𝑦(𝑖))

𝑚

𝑖=1

 Vectorized Approach (Closed Form Solution)

The vectorized or closed-form solution directly

computes the optimal values of 𝑤 and 𝑏 by solving the

normal equation:

𝑤 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦

Where:

- 𝑋𝑇 is Transpose of the feature matrix.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

- (𝑋𝑇𝑋)−1 is Inverse of Gram matrix.

III. IMPLEMENTATION

A. Initialization

Figure 2. Initialization code

Source: writer’s archive

This code sets up and handles the Iris dataset, a popular

dataset in machine learning. It loads the dataset with

sklearn.datasets.load_iris, obtaining the feature matrix

(data) and target labels (target). The particular feature petal

length (data[:, 2]) is designated as x_train for the feature

variable, whereas sepal length (data[:, 0]) is assigned as

y_train for the target variable.

B. Linear Regression with Iterative Approach

Figure 3. compute_loss function

Source: writer’s archive

The compute_loss function calculates the Mean

Squared Error (MSE) cost linked to linear regression. It

accepts the input data x (features), y (responses), and the

model parameters w (coefficients) and b (bias). The

function goes through each data point, computes the

predicted value based on the linear equation, and finds the

square of the difference between the predicted value and

the actual target value.

Figure 4. compute_gradient function

Source: writer’s archive

 The compute_gradient function calculates the gradients

of the loss function with respect to the model parameters 𝑤

(weight) 𝑏 (bias) for a linear regression model. The

function takes the feature array 𝑥, target array 𝑦, and the

current model parameters 𝑤 and 𝑏 as inputs. It iterates

through all data points to compute the predicted value,

accumulates the gradients for each parameter, and

normalizes them by dividing by the total number of

samples. These gradients, d𝑗_dw and 𝑑𝑗_𝑑𝑏, are used in

gradient descent to update the model parameters and

minimize the loss.

Figure 5. gradient_descent function

Source: writer’s archive

The gradient_descent function optimizes a linear

regression model by repeatedly adjusting the model

parameters w (weight) and b (bias) to reduce the loss

function. The function receives the feature array x, the

target array y, initial parameters w_in and b_in, the

learning rate alpha, the number of iterations num_iters,

along with the compute_loss and gradient_function as

inputs.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

C. Linear Regression with Vectorized Approach

Figure 6. vectorized_gradient_decent function

Source: writer’s archive

The vectorized_gradient_descent function performs

gradient descent for linear regression using a fully

vectorized approach. Predictions for all samples are

computed simultaneously as �̂� = 𝑋. 𝑤 + 𝑏, and the

gradients are calculated in a vectorized form:

∂𝐿

∂𝑤
=

1

𝑚
𝑋𝑇 ⋅ (�̂� − 𝑦)

∂𝐿

∂𝑏
=

1

𝑚
∑(�̂� − 𝑦)

These gradients enable effective modifications of the

parameters without going through each individual sample.

This vectorized method enhances the algorithm's speed and

is more suitable for larger datasets. The function returns the

optimized parameters along with the loss history.

D. Linear Regression with Closed Form

Figure 7. closed_form_linear_regression function

Source: writer’s archive

The closed_form_linear_regression function computes

the optimal weights 𝑤 and bias 𝑏 for linear regression using

the normal equation. It augments the feature matrix 𝑋 with

a column of ones to account for bias term and perform

matrix operations to calculate 𝑤 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌. The

function then extracts 𝑏 from the first element of the result

and the remaining elements as 𝑤.

E. Time Comparison Visualization

Fig 8. Plot_execution_time_comparison

Source: writer’s archive

The plot_execution_time_comparison function uses a

bar chart to show the execution timings of several

techniques (such as Gradient Descent, Vectorized Gradient

Descent, and Closed Form). It takes in times (the

corresponding execution times in seconds) and methods (a

list of method names). The function shows a title, plots the

bars, and labels the y-axis with "Execution Time

(seconds)". Additionally, it overlays a text box on the chart

that is dynamically positioned in relation to the bar heights

and contains specific execution timings for each method.

IV. RESULTS AND ANALYSIS

A. Initial Dataset

Figure 9. Initial Dataset Information

Source: writer’s archive

The initially loaded dataset contains 4 features and 150

rows, with one feature (sepal length) designated as the

target variable. All features are of type float64, and there

are no null values in the dataset.

B. Final 𝑤 and 𝑏

Figure 10. Final 𝑤 and 𝑏 values

Source: writer’s archive

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

The final 𝑤 (weights) and 𝑏 (bias) values remain

consistent throughout the three methods: Gradient Descent,

Vectorized Gradient Descent, and the Closed-Form

solution. This result emphasizes the accuracy of every

method in addressing the linear regression issue, since they

reach the same ideal parameters. Gradient Descent and its

vectorized version progressively reduce the loss function

over 10,000 iterations using a learning rate (α) of 1𝑥10−2

, ensuring a precise output. Whereas the Closed-Form

solution directly calculates the optimal parameters through

the normal equation. Although they use different

computational methods, the ultimate outcomes confirm the

mathematical equivalence of these techniques when

applied properly.

C. Time Comparison

Fig 11. Time Comparison Chart

Source: writer’s archive

The time comparison chart shows that the Closed-Form

solution is the quickest of the three methods, followed by

Vectorized Gradient Descent and lastly Gradient Descent.

This outcome is expected because of the characteristics of

the computational procedure for each method. The Closed-

Form solution computes the ideal parameters directly

through matrix operations, avoiding iterative updates and

achieving convergence in one step, which makes it very

efficient.

Vectorized Gradient Descent, although it remains

iterative, greatly advantages from using optimized NumPy

libraries. These libraries are created to efficiently manage

extensive matrix and vector operations, allowing

concurrent updates for all data points and minimizing

computation time relative to the traditional Gradient

Descent method. This vectorized approach reduces

overhead and fully utilizes modern hardware acceleration.

Gradient Descent, by contrast, executes these updates for

every data point iteratively, making it more

computationally intensive, particularly as the size of the

dataset increases.

These findings highlight the necessity of choosing the

right approach according to the dataset size and available

computational resources. The Closed-Form solution works

best for small to medium datasets, whereas Vectorized

Gradient Descent provides a good mix of efficiency and

scalability for larger datasets. Standard Gradient Descent,

although less speedy, remains beneficial in scenarios

where a straightforward approach or incremental

monitoring is needed.

V. CONCLUSION

This study compared three approaches for solving linear

regression problems: Gradient Descent, Vectorized

Gradient Descent, and the Closed-Form solution. The

results showed that although all techniques yielded

identical final values for the model parameters (w and b),

their computational efficiency differed notably.

The Closed-Form solution proved to be the quickest,

thanks to its straightforward calculation of parameters via

the normal equation without requiring iterative updates.

Nonetheless, the computational expense may become

excessive for extremely large datasets because of the

matrix inversion process. Vectorized Gradient Descent

provides a mix of speed and scalability, greatly enhanced

by optimized NumPy libraries for matrix and vector

computations, making it an ideal option for extensive

datasets. Gradient Descent is the slowest method because

of its non-vectorized iterative updates, making it less ideal

for modern applications with large-scale data.

This study highlights the significance of choosing the

right technique according to dataset size, available

computational resources, and the particular needs of the

issue. For datasets that are small to medium in size, the

Closed-Form solution is the best choice. For bigger

datasets, Vectorized Gradient Descent offers a more

effective and scalable option.

VI. APPENDIX

Video Link :

https://www.canva.com/design/DAGbCzc9EMM/PtwpeA

7qbBHVizJL0-

mldQ/view?utm_content=DAGbCzc9EMM&utm_campai

gn=designshare&utm_medium=link&utm_source=recordi

ng_view

VII. ACKNOWLEDGMENT

The completion of this paper would not have been

possible without the support and encouragement of many

people. First, I thank God for providing the strength,

wisdom, and determination to finish this work.

I sincerely thank Ir. Rila Mandala, M.Eng, Ph.D the

lecturer for Linear Algebra and Geometrics (K-01), whose

insightful lectures and helpful feedback were crucial in

developing the concepts examined in this paper.

I am also deeply grateful to my parents for their constant

https://www.canva.com/design/DAGbCzc9EMM/PtwpeA7qbBHVizJL0-mldQ/view?utm_content=DAGbCzc9EMM&utm_campaign=designshare&utm_medium=link&utm_source=recording_view
https://www.canva.com/design/DAGbCzc9EMM/PtwpeA7qbBHVizJL0-mldQ/view?utm_content=DAGbCzc9EMM&utm_campaign=designshare&utm_medium=link&utm_source=recording_view
https://www.canva.com/design/DAGbCzc9EMM/PtwpeA7qbBHVizJL0-mldQ/view?utm_content=DAGbCzc9EMM&utm_campaign=designshare&utm_medium=link&utm_source=recording_view
https://www.canva.com/design/DAGbCzc9EMM/PtwpeA7qbBHVizJL0-mldQ/view?utm_content=DAGbCzc9EMM&utm_campaign=designshare&utm_medium=link&utm_source=recording_view
https://www.canva.com/design/DAGbCzc9EMM/PtwpeA7qbBHVizJL0-mldQ/view?utm_content=DAGbCzc9EMM&utm_campaign=designshare&utm_medium=link&utm_source=recording_view

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

support, love, and encouragement throughout my studies.

Finally, I extend my thanks to my friends, whose guidance

and companionship made this work more enjoyable and

meaningful.

REFERENCES

[1] Alshammari, Ahmad. (2024). Implementation of

Linear Regression using Least Squares and Gradient

Descent in Python. International Journal of Computer

Applications. 186. 52-57. 10.5120/ijca2024923446.

[2] Geng, Yu & Li, Qin & Yang, Geng & Qiu, Wan.

(2024). Linear Regression. 10.1007/978-981-97-

3954-7_3.

[3] “Homepage Rinaldi Munir.”

https://informatika.stei.itb.ac.id/~rinaldi.munir/Aljaba

rGeometri/2023-2024/Algeo-08-Determinan-

bagian1-2023.pdf (accessed Dec. 28, 2024).
[4] H. Anton and C. Rorres, Elementary linear algebra:

With Supplemental Applications. International

student version. 2015.

[5] Kumari, Khushbu & Yadav, Suniti. (2018). Linear

regression analysis study. Journal of the Practice of

Cardiovascular Sciences. 4. 33.

10.4103/jpcs.jpcs_8_18.

[6] Maindonald, John & Braun, W. & Andrews, Jeffrey.

(2024). Multiple Linear Regression.

10.1017/9781009282284.004.

[7] Maulud, Dastan & Abdulazeez, Adnan. (2020). A
Review on Linear Regression Comprehensive in

Machine Learning. Journal of Applied Science and

Technology Trends. 1. 140-147. 10.38094/jastt1457.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 1 Januari 2025

Steven Owen Liauw - 13523103

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-08-Determinan-bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-08-Determinan-bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-08-Determinan-bagian1-2023.pdf

	I. Introduction
	II. THEORETICAL FRAMEWORK
	III. Implementation
	A. Initialization
	B. Linear Regression with Iterative Approach
	C. Linear Regression with Vectorized Approach
	D. Linear Regression with Closed Form
	E. Time Comparison Visualization

	IV. Results and analysis
	V. Conclusion
	VII. Acknowledgment
	References
	PeRNYATAAN

